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the nineteenth century seemed to settle the question:

the basic definitions of calculus free of infinitesimals given by

Karl Weierstrass (1815-1897)

the attack on those who appeared to be the last defenders of

infinitesimals

led by George Cantor (1845-1918), with the authority of the

champion of the infinite,

supported by Giuseppe Peano (1858-1932)
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A. L. Cauchy, Résumé des lecons données à l’
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ratio of vanishing increments

Cauchy made half a step towards the redemption of the

calculus from the infinitesimals; he probably had the right

definition of limit, but he insisted in framing it in infinitesimal

jargon and in reasoning with infinitesimals; so only

Weierstrass’s ✏-� definition of limit put the calculus

in the definite arithmetical form.

From that point on Cauchy’s contribution to the rigour has been
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[. . . ] he [Newton] laid down the Idea of deducing the
Area from the Ordinate, by considering the Area as a
Quantity, growing or increasing by continual Flux, in Pro-
portion to the Length of the Ordinate, supposing the Ab-
scissa to increase uniformly in Proportion to Time. And
from the Moments of Time he gave the Name of Mo-
ments to the momentaneous Increases, or infinitely small
Parts of the Abscissa and Area, generated in Moments
of Time. The Moment of a Line he called a Point, in the
Sense of Cavallerius, tho’ it be not a geometrical Point,
but a Line infinitely short, and the Moment of an Area or
Superficies he called a Line, in the Sense of Cavallerius,
though it be not a geometrical Line, but a Superficies
infinitely narrow.
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Cavallerius is Bonaventura Cavalieri (1598-1647), who called his
infinitesimal lines “indivisibles”.
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slope z : u is equal to a : 2y + z

This ratio [a : y+ z] is always smaller than a : 2y, but the
smaller z is, the greater the ration will be and, since one
may choose z as small as one pleases, the ratio a : 2y+ z

can be brought as close to the ratio a : 2y as we like.
Consequently, a : 2y is the limit of the ratio a : 2y + z.

Sylvestre F. Lacroix (1765-1843)

The limit of the ratio (u1�u)/h [. . . ] is the value towards
which this ratio tends in proportion as the quantity h

diminishes, and to which it may approach as near as we
choose to make it.

9
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slope z : u is equal to a : 2y + z

This ratio [a : y+ z] is always smaller than a : 2y, but the
smaller z is, the greater the ration will be and, since one
may choose z as small as one pleases, the ratio a : 2y+ z

can be brought as close to the ratio a : 2y as we like.
Consequently, a : 2y is the limit of the ratio a : 2y + z.

Sylvestre F. Lacroix (1765-1843)

The limit of the ratio (u1�u)/h [. . . ] is the value towards
which this ratio tends in proportion as the quantity h

diminishes, and to which it may approach as near as we
choose to make it.
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ratio of vanishing increments

Cauchy made half a step towards the redemption of the calculus
from the infinitesimals; that he probably had the right definition
of limit, if we kindly look at it from the subsequent developments,
but he insisted in framing it in infinitesimal jargon (as we will
see) and in reasoning with infinitesimals; so only Weierstrass’s
✏-� definition of limit put the calculus in the definite arithmetical
form. From that point on Cauchy’s contribution to the rigour
has been forgotten or downplayed.

Cauchy’s insistence in reasoning with infinitesimals was also re-
sponsible, according to the vulgata, for his famous “errors”.
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´

Ecole royale

polytechnique sur le calcul infinitésimal, Debures, Paris, 1823

My principal aim has been to reconcile rigor, which I
have made a law to myself in my Cours d’analyse, with
the simplicity which the direct consideration of infinitely
small quantities produces.

Cauchy, 1823

10

infinitesimals as mathematical entities by full right

which can be used directly, though it may sometimes

be useful to think of them as represented by sequences
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“une quantité infiniment petite” or “un infiniment petit”

not that of Cavallerius

infinitesimals as mathematical entities by full right

which can be used directly,

though it may sometimes

be useful to think of them as represented by sequences

“une quantité infiniment petite” or “un infiniment petit”

not that of Cavallerius



A. L. Cauchy, Cours d’analyse de l’Ecole royale polytechnique,
Debures, Paris, 1821
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“une quantité infiniment petite” or “un infiniment petit”

not that of Cavallerius

infinitesimals as mathematical entities by full right

which can be used directly,

though it may sometimes

be useful to think of them as represented by sequences
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in other words, it is necessary and su�cient that, for
infinitely large values of the number n, the sums

s

n

, s

n+1, sn+2, . . .

di↵er from the limit s, and consequently among themsel-
ves, by infinitely small quantities.
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but only of global continuity in an interval

and of continuity in the vicinity of a particular value

If, starting from a value of x included between these li-
mits, one assigns to the variable x an infinitely small
increment ↵, the function itself will take on for an incre-
ment the di↵erence f(x+↵)� f(x), which will depend at
the same time on the new variable ↵ and on the value of
x. This granted, the function f(x) will be, between the
two limits assigned to the variable x, a continuous func-
tion of the variable if, for each value of x intermediate
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Laugwitz’s comment is that the hidden lemma is true in any
reasonable theory of infinitesimals.

one of the “errors”

Unfortunately, Cauchy claimed to be able to prove the
existence of the integral, that is the convergence of the
“Riemann’s sums” for an arbitrary continuous function;
his proof would be correct if based on the theorem of
uniform continuity of functions continuous in a closed
interval, is deprived of any probative value by wan of
such a notion.

Bourbaki, 1960
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between these limits, the numerical value of the di↵eren-
ce f(x + ↵) � f(x) decreases indefinitely with that of ↵.
In other words, the function f(x) will remain continuous

with respect to x between the given limits, if, between

these limits, an infinitely small increment of the varia-

ble always produces an infinitely small increment of the

function itself.

Cauchy, 1823

Therefore, when the elements of the di↵erence X�x0 be-
come infinitely small, the mode of division has no more
than an imperceptible [insensible] influence on the value
of S; and, if one makes the numerical values of these ele-
ments decrease indefinitely, by increasing their number,
the value of S will end by being perceptibly [sensiblement]
constant or, in other words, it will end by attaining a cer-
tain limit which will depend solely on the form of the
function f(x) and on the extreme values x0 and X attri-
buted to the variable x. This limit is that which one calls
a definite integral.

Cauchy, 1823
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Laugwitz’s comment is that this hidden lemma is true in any
reasonable theory of infinitesimals.

one of the “errors”

Unfortunately, Cauchy claimed to be able to prove the
existence of the integral, that is the convergence of the
“Riemann’s sums” for an arbitrary continuous function;
his proof, that would be correct if based on the theorem
of uniform continuity of functions continuous in a closed
interval, is deprived of any probative value by want of
such a notion.

Bourbaki, 1960
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[. . . ] in the second edition page 9 [of Thomae’s book]
one finds numbers that (horribile dictu) are smaller than
any conceivable real number, and yet are di↵erent from
zero.

letter to Giulio Vivanti (1859-1949) of December 13, 1893:

[Thomae] was the first to infect mathematics with the
infinitary Cholera-Bacillus.

and recalls to have noticed 25 years before that Thomae’s

quantities were founded on a “flagrant petitio principii”

no explicit criticism of du Bois-Reymond
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[Di↵erentials simply are variables having zero as their li-
mit, and represent the potentially infinitely small, without
being properly infinitesimal. However] this does not ex-
clude that, in a future state of analysis, one may find
means to define di↵erent quantities, since they would be
smaller than any of the quantities used until now; these
properly infinitesimal quantities will certainly in no way
be related to our di↵erentials.
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Gösta Mittag-Le✏er (1846-1927) in a letter of February 7, 1883
asked Cantor

1. “Are there among your new numbers such that might fit in
between the rational and irrational numbers?”

2. “If
P

a

k

and
P

b

k

are divergent series of positive terms, can
one say which one is greater?”

1+ 2+ 3+ . . . . = !, 1 + 1/2+ 1/3+ . . . = !

2+ 3+ . . .+1 = ! +1,

1 + 3+ 5+ . . .+2+ 4+ 6+ . . . = 2!
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Gösta Mittag-Le✏er (1846-1927) in a letter of February 7, 1883
asked Cantor

1. “Are there among your new numbers such that might fit in
between the rational and irrational numbers?”

2. “If
P

a

k

and
P

b

k

are divergent series of positive terms, can
one say which one is greater?”

1+ 2+ 3+ . . . . = !, 1 + 1/2+ 1/3+ . . . = !

2+ 3+ . . .+1 = ! +1,

1 + 3+ 5+ . . .+2+ 4+ 6+ . . . = 2!

25
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The definition of the sum of a series of positive numbers,
which is given as a well-ordered set, is obtained by the
least hyperfinite [überendliche] number, which is greater
than or equal to the sum of arbitrarily many numbers
of the set, taken in their given succession: that such a
minimum always exists is easily seen.

[If the index set is ! and the series converges] the sum
which follows from this definition agrees completely with
that which is obtained by the known definitions, as you
will certainly see.

to Benno Kerry (1858-1889) philosopher and psychologist,

letter of February 4, 1887
26
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Cantor communicated a proof of the imossibility of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

Cantor stated two postulates for an ordered extension of his
numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
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To Kerry Cantor stated two postulates for an ordered extension of his
numbers ↵ + x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always possible,
and the associative law holds. In particular, finite multiples ⇣ · ⌫ of any
quantity ⇣ are possible, if ⌫ is a finite integral multiplier.

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those quantities, taken
in the given succession of its summands, must have a definite sum s, where
s belongs either to the old or to the extended system.”

Then he stated the existence of the least upper bound in a disguised form:
“In order that s be the sum of that infinite series, and if s0 is any quantity
(among those known) smaller than s, then a finite integer n must exist such
that ⇣1+⇣2+. . .+⇣n > s

0. For, if for each finite integer n, ⇣1+⇣2+. . .+⇣n  s

0

then also ⇣1 + ⇣2 + . . . in inf.  s

0 which would not be compatible with both
of the assumptions ⇣1 + ⇣2 + . . . in inf. = s and s

0
< s.”

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

He let s0 = 3/4 and obtained from postulate 2, that for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣n > 3/4.

Since all ⇣k = ⇣, (B) implies ⇣n+1 + ⇣n+a + . . . ⇣2n > 3/4, and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣n + . . . ⇣2n > 3/4 + 3/4,

a contradiction to (A).

In his “Mitteilungen” of 1887 that Cantor published a sketchy proof, if
it can be called a proof, for the non-existence of infinitesimals.35 He simply
claimed that if ⇣ · n < 1 for each finite integer, then he would be able to

hint of a proof of the non existence of infinitesimals, probably along the same lines of the
proof communicated to Kerry, as we will see. Kerry believed that a formal definition of
infinitely small numbers could be arrived at starting from Cantor’s ordinals: the greatest
such number being one which produces 1 by adding itself to itself ! times, then that which
which produces 1 by adding itself to itself ! + 1 times, then

1

!

,

1

! + 1
, . . . ,

1

!

2

and so on. He admitted however to have no idea whether they would have empirical
applicability (see [Dauben 1979, p. 130]).

35[Cantor 1932, pp. 407-8]. Here he published also a letter he had written the same
year to Weierstrass on the same subject.
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least hyperfinite [überendliche] number, which is greater
than or equal to the sum of arbitrarily many numbers
of the set, taken in their given succession: that such a
minimum always exists is easily seen.

[If the index set is ! and the series converges] the sum
which follows from this definition agrees completely with
that which is obtained by the known definitions, as you
will certainly see.

to Benno Kerry (1858-1889) philosopher and psychologist,

letter of February 4, 1887
26

Cantor communicated a proof of the imossibility of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

Cantor stated two postulates for an ordered extension of his
numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27

Cantor communicated a proof of the impossibility

of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

Cantor stated two postulates for an ordered extension of his
numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27

Cantor communicated a proof of the impossibility

of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

Cantor stated two postulates for an ordered extension of his
numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27



The definition of the sum of a series of positive numbers,
which is given as a well-ordered set, is obtained by the
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least hyperfinite [überendliche] number, which is greater
than or equal to the sum of arbitrarily many numbers
of the set, taken in their given succession: that such a
minimum always exists is easily seen.

[If the index set is ! and the series converges] the sum
which follows from this definition agrees completely with
that which is obtained by the known definitions, as you
will certainly see.

to Benno Kerry (1858-1889) philosopher and psychologist,

letter of February 4, 1887
26

Cantor communicated a proof of the imossibility of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

Cantor stated two postulates for an ordered extension of his
numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27

Cantor communicated a proof of the impossibility

of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

Cantor stated two postulates for an ordered extension of his
numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27

Cantor communicated a proof of the impossibility

of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

Cantor stated two postulates for an ordered extension of his
numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27

Cantor communicated a proof of the impossibility

of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

To Kerry, Cantor stated two postulates for an ordered extension
of his numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27

Cantor communicated a proof of the impossibility

of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

To Kerry, Cantor stated two postulates for an ordered extension
of his numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27

Cantor communicated a proof of the impossibility

of infinitesimals

also said, in the “Mitteilungen” of 1887, to have such a proof

To Kerry, Cantor stated two postulates for an ordered extension
of his numbers

↵+ x, ↵ a finite or transfinite ordinal, and x real, 0 < x < 1:

1. ”Addition of any finite collection of these quantities is always
possible, and the associative law holds. In particular,

finite multiples ⇣ · ⌫ of any quantity ⇣ are possible,

if ⌫ is a finite integral multiplier.
27



The definition of the sum of a series of positive numbers,
which is given as a well-ordered set, is obtained by the
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The definition of the sum of a series of positive numbers,
which is given as a well-ordered set, is obtained by the
least hyperfinite [überendliche] number, which is greater
than or equal to the sum of arbitrarily many numbers
of the set, taken in their given succession: that such a
minimum always exists is easily seen.

[If the index set is ! and the series converges] the sum
which follows from this definition agrees completely with
that which is obtained by the known definitions, as you
will certainly see.

to Benno Kerry (1858-1889) philosopher and psychologist,

letter of February 4, 1887
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2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”
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Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29



2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

He let s

0 = 3/4 and obtained from postulate 2, that for some
finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29



2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

He let s

0 = 3/4 and obtained from postulate 2, that for some
finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29



2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

He let s

0 = 3/4 and obtained from postulate 2, that for some
finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29



2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

2. Also, a simply infinite sequence ⇣1, ⇣2, ⇣3, . . . of those

quantities, taken in the given succession of its summands,

must have a definite sum s, where s belongs either to the old or
to the extended system.”

the existence of the least upper bound in a disguised form:

“In order that s be the sum of that infinite series,

if s

0 is any quantity (among those known) smaller than s,

then a finite integer n must exist such that ⇣1+ ⇣2+ . . .+ ⇣

n

> s

0.

28

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣. Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

He let s

0 = 3/4 and obtained from postulate 2, that for some
finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣

k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4, and,
finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29

Now if ⇣ = 1/! , or ⇣ · ! = 1, let ⇣1 = ⇣2 = ⇣3 = . . . = ⇣.

Then,

(A) ⇣1 + ⇣2 + . . . in inf. = 1.

Let s

0 = 3/4, from postulate 2 for some finite integer n:

(B) ⇣1 + ⇣2 + . . .+ ⇣

n

> 3/4.

Since all ⇣
k

= ⇣, (B) implies ⇣

n+1 + ⇣

n+a

+ . . . ⇣2n > 3/4,

and, finally,

(C) ⇣1 + ⇣2 + . . .+ ⇣

n

+ . . . ⇣2n > 3/4+ 3/4,

a contradiction to (A).

29



Cantor and Veronese in 1890

On 6 October Cantor challenges Veronese to present the real
ideas (realen Ideen)

that lie at the ground of his symbols.

On 13 November Cantor: “You say, ‘Chez moi il n’y a pas

un premier nombre infini [. . . ]

Voilà la di↵erence essentielle entre votre nombre ! et

mon nombre 11 .’

In any case, we shall completely agree that these opposite

theories cannot both be true.”
32



Cantor and Veronese in 1890

On 6 October Cantor challenges Veronese to present the real
ideas (realen Ideen)

that lie at the ground of his symbols.

On 13 November Cantor: “You say, ‘Chez moi il n’y a pas

un premier nombre infini [. . . ]
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Newton’s “Hypotheses non fingo” as epigraph to the “Beiträge”
(1895)

infinitesimals, in the Veronese’s “fingierte Form” are not

di↵erent from that of signs on paper

definitions are not arbitrary, but they have to rely on the nature
of sets

We certainly do not give laws to the intellect or other
things by our arbitrary will, but as faithful scribes we
receive and copy them from the very voice of nature.

Francis Bacon
33
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Voilà la di↵erence essentielle entre votre nombre ! et

mon nombre 11 .’

In any case, we shall completely agree that these opposite

theories cannot both be true.”
32

Cantor and Veronese in 1890

On 6 October Cantor challenges Veronese to present the real
ideas (realen Ideen)

that lie at the ground of his symbols.

On 13 November Cantor: “You say, ‘Chez moi il n’y a pas

un premier nombre infini [. . . ]
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Voilà la di↵erence essentielle entre votre nombre ! et

mon nombre 11 .’

In any case, we shall completely agree that these opposite

theories cannot both be true.”
32

Cantor and Veronese in 1890

On 6 October Cantor challenges Veronese to present the real
ideas (realen Ideen)

that lie at the ground of his symbols.

On 13 November Cantor: “You say, ‘Chez moi il n’y a pas

un premier nombre infini [. . . ]
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infinitesimals, in the Veronese’s “fingierte Form” are not di↵e-
rent from that of signs on paper

definitions are not arbitrary, but they have to rely on the nature
of sets

We certainly do not give laws to the intellect or other
things by our arbitrary will, but as faithful scribes we
receive and copy them from the very voice of nature.

Francis Bacon
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Voilà la di↵erence essentielle entre votre nombre ! et

mon nombre 11 .’

In any case, we shall completely agree that these opposite

theories cannot both be true.”
32



Cantor and Veronese in 1890

On 6 October Cantor challenges Veronese to present the real
ideas (realen Ideen)

that lie at the ground of his symbols.

On 13 November Cantor: “You say, ‘Chez moi il n’y a pas

un premier nombre infini [. . . ]
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letter to Killing of April 5, 1895
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potheses, but are immediately derived from the natural
concept of sets. They are just as necessary and free from
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Peano’s review of Veronese’s book in 1892 complains

of Veronese’s bombastic and ungrammatical style,

quotes the first three sentences of the main text of the book:

“1. I think. 2. I think one thing or several things. 3. I think
first one thing, then one thing”.

“something posited by thought can later be conceived as given
to thought”

“And so one could continue at length the enumeration of the
absurdities which the author has piled up. But these errors, and
the lack of precision and rigor throughout the book, deprive it
of any value”
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where 1u = [{nu | n 2 N} is called multiple of infinite order of u

and is the least upper bound of the nu’s

1u is a segment in the following more general sense:
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Peano: if we construct (1+1)u, (1+2)u, . . . ,21u, . . . ,12
u

[the last being obtained by multiplying 1u by 1]

and so on, “all these segments, obtained by multiplying u

by the Cantor’s transfinite numbers, are equal to one another

12. (1+1)u = 1u

“Every segment which can be covered by a multiple of u

plus a part of u can be covered by a multiple of u,

and conversely”.
38
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13. 21u = 1u

“Every segment which can be covered by the sum

of two multiples of u can be covered by a multiple of u,

and conversely”.

“[. . . ] we can multiply 1u by 1, and obtain 12
u, and so on”

As a consequence, although the segment 1u is contained
in the segment v, it cannot be assigned a definite right
endpoint, since when to such a segment we add u, or
double it, we get a larger segment.
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endpoint, since when to such a segment we add u, or
double it, we get a larger segment.
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Each of these results contradicts the common idea of
segment. And from the circumstance that the infinite-
simal segment cannot be made finite through any ac-
tually infinite multiplication, however powerful, I am led
to agree with Cantor that it cannot be one of the finite
magnitudes
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“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
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R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41



⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1974) ha considered substructures of a non
standard model

⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1974) ha considered substructures

of a non standard model ⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41



⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1974) ha considered substructures of a non
standard model

⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1974) ha considered substructures

of a non standard model ⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1918-1974) ha considered substructures

of a non standard model ⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1918-1974) has considered substructures

of a non standard model ⇤
R of Analysis

The field ⇤
R su↵ers from a surfeit of infinitely small and

infinitely large numbers [what is needed is] a field interme-
diate between R and ⇤

R which does not contain infinite
numbers of unrestricted size, nor infinitesimal that are
arbitrary smal.

41



⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1974) ha considered substructures of a non
standard model

⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1974) ha considered substructures

of a non standard model ⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1918-1974) ha considered substructures

of a non standard model ⇤
R of Analysis

The field ⇤
R su↵ers from a surfeit of infinitely small and

infinitely large numbers [what is needed is] a field interme-
diate between R and ⇤

R which does not contain infinite
numbers of unrestricted size, nor infinitesimal that are
arbitrary smal.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1918-1974) ha considered substructures

of a non standard model ⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1918-1974) has considered substructures

of a non standard model ⇤
R of Analysis

The field ⇤
R su↵ers from a surfeit of infinitely small and

infinitely large numbers [what is needed is] a field interme-
diate between R and ⇤

R which does not contain infinite
numbers of unrestricted size, nor infinitesimal that are
arbitrary smal.

41



⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1974) ha considered substructures of a non
standard model

⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1974) ha considered substructures

of a non standard model ⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1918-1974) ha considered substructures

of a non standard model ⇤
R of Analysis

The field ⇤
R su↵ers from a surfeit of infinitely small and

infinitely large numbers [what is needed is] a field interme-
diate between R and ⇤

R which does not contain infinite
numbers of unrestricted size, nor infinitesimal that are
arbitrary smal.

41

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1918-1974) ha considered substructures

of a non standard model ⇤
R of Analysis

“The field ⇤
R su↵ers from a surfeit of infinitely small and in-

finitely large numbers [what is needed is] a field intermediate
between R and ⇤

R which does not contain infinite numbers of
unrestricted size, nor infinitesimal that are arbitrary small’.

41

⌦-calculus

simplified aproaches to nonstandard analysis

Abraham Robinson (1918-1974) has considered substructures

of a non standard model ⇤
R of Analysis

The field ⇤
R su↵ers from a surfeit of infinitely small and

infinitely large numbers [what is needed is] a field interme-
diate between R and ⇤

R which does not contain infinite
numbers of unrestricted size, nor infinitesimal that are
arbitrary smal.

41



a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42



a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42



a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42



a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42



a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

Basic definition If S(n) for each n = 1,2,3, . . . is a statement

in L,

and if S(n) is true in T for almost all n,

then S(⌦) is true in T h⌦i.

Basic definition If S(n) for each n = 1,2,3, . . . is a statement

in L,

and if S(n) is true in T for almost all n,

then S(⌦) is true in T h⌦i.

Basic definition If S(n) for each n = 1,2,3, . . . is a statement

in L,

and if S(n) is true in T for almost all n,

then S(⌦) is true in T h⌦i.



a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

a di↵erent algebraic approach of Laugwitz,

inspired by the extension procedures of the theory of ordered
fields

T in a language L

elementary theory of natural and rational numbers

new symbol ⌦

“which in a precise way, behaves like very large natural numbers”

extended theory T h⌦i in L(⌦)

42

Basic definition If S(n) for each n = 1,2,3, . . . is a statement

in L,

and if S(n) is true in T for almost all n,

then S(⌦) is true in T h⌦i.

Basic definition If S(n) for each n = 1,2,3, . . . is a statement

in L,

and if S(n) is true in T for almost all n,

then S(⌦) is true in T h⌦i.

Basic definition If S(n) for each n = 1,2,3, . . . is a statement

in L,

and if S(n) is true in T for almost all n,

then S(⌦) is true in T h⌦i.

Basic definition If S(n) for each n = 1,2,3, . . . is a statement

in L,

and if S(n) is true in T for almost all n,

then S(⌦) is true in T h⌦i.



sequences of rational numbers, a, b, . . .

equality a(⌦) = b(⌦) is extended according

to the condition of the Basic Definition,

if applicable, that is if a(n) = b(n) for almost all n.

the equality relation is an equivalence,

the equivalence classes of = are called ⌦-rationals,

and are denoted by Greek small letters

Proposition The axioms of commutative ordered fields are true
for the ⌦-rational numbers.
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if ↵ > n0 for each natural number n0 T h⌦i in L(⌦)

↵ will be called infinitesimal if ↵ <

1
n0

for each n0

⌦ equivalence class of identity i(n) = n

n0 equivalence class of the constant function n0(n) = n0

⌦ > n0 means that i(n) > n0 for almost all n
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One might suspect that there mere adjoining of a single
new constant ⌦ could not lead to a theory comparable to
that of a usual nonstandard ⇤Q. Surprisingly enough, we
shall be able to show [. . . ] that our theory is equivalent
to that of a ⇤Q.

theories containing some set theory, in order to talk of numbers,
sets, functions

basic definition applies without changes to sequences of such
objects

if all of the S(n) are of the same type, numbers, sets or functions,

then ⌃ = S(⌦) will be called

respectively an ⌦-number, an internal set or an internal function
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Internal sequences of objects in T h⌦i are given

by double sequences;

� = ↵(⌫), ⌫ 2⇤ N

means that for some a(n,m) and some sequence b(n) of

objects of T

we have b(⌦) = a(⌦,m(⌦)) where b(⌦) = �, m(⌦) = ⌫,

a(⌦,m(⌦)) = ↵(⌫).
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Leonhard Euler (1707-1783)

0 : 0 = n : m correct for any n,m

Colin MacLaurin (1698-1746)

The ration of 2x + o to a continually decreases while o

decreases and is always greater than the ratio of 2x to
a while o is any real increment, but it is manifest that it
continually approaches to the ratio of 2x to a as its limit.

Jean B. Le Rond D’Alembert (1717-1783)

y

2 = ax

slope of the secant through two point (x, y) and (x+ u, y + z)
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slope z : u is equal to a : 2y + z

This ratio [a : y+ z] is always smaller than a : 2y, but the
smaller z is, the greater the ration will be and, since one
may choose z as small as one pleases, the ratio a : 2y+ z

can be brought as close to the ratio a : 2y as we like.
Consequently, a : 2y is the limit of the ratio a : 2y + z.

Sylvestre F. Lacroix (1765-1843)

The limit of the ratio (u1�u)/h [. . . ] is the value towards
which this ratio tends in proportion as the quantity h

diminishes, and to which it may approach as near as we
choose to make it.
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