
The LION way: machine Learning for 

Intelligent OptimizatioN: a source of 

power for innovation in business 

 

Roberto Battiti 
University of Trento (Italy) 
 

 

1 

NUMTA2016 

19 – 25 June 2016  

Club Med Resort “Napitia” 

Pizzo Calabro, Calabria, Italy 



Automation  

 

 Huge productivity increases 

   1/10 people per revenue 

 Fast adaptation/response, mass 

customization 

 

Data-driven models + Optimization 

 

 

 

 

Driving forces in business creation 

and innovation 

Google,facebook,twitter.... 



Automation needs meta-optimization 

and machine learning  

 

Self-tuning: Method and parameters 

selection, adaptation, configuration, 

from building blocks 

 

Learning the problem definition from data 

 

 

 



Optimizing event locations... 

Optimization is fine but ... What is the function? 

Online learning! 
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A new revolution 
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 Basic optimization heuristics are 

becoming a commodity 

 More and more difficult to discover radically 

new techniques. Often many techniques. 

Subtle differences evaporate in real-world 

noise. 

 

NOTE: using new names for old building 

blocks (local search, greedy constructions, 

diversification vs. intensification) does not 

count as novelty!  

 

Optimization …in 2016 



Metaheuristics the Metaphor Exposed 
Kenneth Sorensen, Sep 2012, prev. Fred Glover 

 jumps of frogs,  

 refraction of light 

 flowing of water to the sea, 

 orchestra playing,  

 sperm cells moving to fertilize an egg,  

 spiraling movements of galaxies, 

 colonizing behavior of empires,  

 behavior of bats, birds, ants, bees, flies, and virtually 

every other species of insects  

it seems that there is not a single natural or man-made 

process that cannot be used as a metaphor for yet 

another “novel“ optimization method. 
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SA and GA 

started it all ! 



Real word is dirty (black?) 
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Many inputs, 

noisy, 

some irrelevant 

Some posivite objectives (MOOP) 

Combination not clear 

Hidden objectives 

Dynamic aspirations 

No math formula 

Maybe some 

high-level  

knowledge 

and intuition 



Optimization: a tremendous power  

 

 Still largely unexploited in most real-world contexts: 

standard optimization assumes a function f(x) to be 

minimized, …and math knowledge.  

 function f(x) helps people to concentrate on 

goals/objectives, not on algorithms (on policies not on 

processes) 

 

 BUT static f(x) does not exist in explicit form or is 

extremely difficult and costly to build by hand, and math 

knowledge is scarce.  
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Tapping and musik 

Try asking a manager 

«Aortic radius minimizes dissipated power» -Pardalos 



Optimization: a tremendous power 

 

 Machine learning: learn f(x) from data (including from 

user feedback) 

 

 Learning and Intelligent Optimization (LION):  

machine learning from data for optimization which can 

be applied to complex, noisy, dynamic contexts.  

 ML to approximate f(x) but also to guide opt. process  

   via self-tuning, both offline and online 
 

 Autonomy: more power directly in the hands of 

businesses 
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Optimization  for Machine Learning 

Flexible model (with parameters w) How to pick w? 

 

ErrorFunction E(w) 

Learn by minimizing E(w) on training examples 

 

...generalization 

complicates a bit 

 

MLP and Backpropagation 

SVM ... 
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Source of power 



Machine Learning  for Optimization 

 Kriging 51 

 

 

 

 

 

 

Gaussian processes, Bayesian inference, splines, local models in 

continous optimization....  
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Danie Gerhardus Krige  

(26 August 1919 – 3 March 2013) 

Practical optimization is coslty ...f(x) 

Angela Kunoth: «adaptive multi-scale» 



Machine Learning  for Optimization 

Guide optimization process  

by learning from previous search history 
   

  Reactive Search Optimization (RSO)  

  

… suitable if single clear f(x) 

  

Build objectives  

by learning from decision maker 
   

  Brain-Computer Multi-Objective Optimization 

  

… suitable if objectives are partially specified 
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The role of the user 

 choices and free parameters                        

    Algorithm(T) 
 

 the user as a crucial learning component 
(“trial and error”) 

 

 Parameter tuning is a typical “learning” 
process where experiments are designed, with 
the support of statistical estimation (parameter 
identification) tools. 
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The role of the user 
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Automated tuning through 

machine learning 

Automation. The time-consuming tuning 

phase is now substituted by an automated 

process. 

Complete and unambiguous 

documentation. The algorithm becomes 

self-contained:  its quality can be judged 

independently from the designer. 

 

 
Complexity is shifted 

Final user  algorithm developer 

Reactive search optimization needs proactive 

researcers 
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Different from Markov process 

 

 

 

 

 Asymptotic convergence is irrelevant 

 Slow “speed of convergence” to the 

stationary distribution... Complete 

enumeration can be faster! 

 

Simulated Annealing 
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Reactive Search Optimization 

integration of online machine learning 
techniques for local search heuristics.  

 

The word reactive hints at a ready 
response to events during the search 
through an internal online feedback loop for 
the self-tuning of critical parameters. 

 

 
 
 

Biological systems are highly adaptive; they use signals  

coming in from receptors and sensors to fine-tune their functioning.  

Adaptivity is a facet of the reactivity of such systems. 
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On-line tuning 

Take into account: 

 
1. Problem-dependent 

2. Task-dependent 

3. Local properties in configuration space 

(see local search), parameters are 

dynamically tuned based on optimization 

state and previous history 



RSO applied: intensification or diversification? 

It is a good morning exercise for 

a research scientist to discard a 

pet hypothesis every day before 

breakfast. It keeps him young. 

Konrad Lorenz 

 

Diversification requires effort 
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A counter-example 
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An example: reactive  

prohibition-based local search 

 X is the search space 

Neighborhood  

 

 Search trajectory 

0010110001000 



25 

 Local search leads to local minima 

What next? 

 (random) restart 

 try to use knowledge accumulated during the 

previous searches (learn !) 

… escape from previously visited basins of 

attraction around a local minimizer (diversification) 

simple diversification through prohibitions 

 

Prohibition-based local search 



Prohibition-based local search (2) 

 
 Prohibition-based: 
   history 
 

 Steiglitz Weiner- denial strategy for TSP (once common 
features are detected in many suboptimal solutions, they 
are forbidden) (opposite to reduction strategy: all edges 
that are common to a set of local optima are fixed) 

 
 Lin-Kernighan for graph partitioning 
 
 Tabu Search (Fred Glover) 
 
 Steepest Ascent Mildest Descent (Hansen – Jaumard) 

 



27 

 diversification through prohibitions 
 

 

 

 

 

 

 

Prohibition-based local search (3) 

0010110001000 

0010010011000 

0010010001000 H=1 

H=2 



Fundamental relationship between 

prohibition and diversification 

(Battiti, 1999) 
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Some forms of Tabu Search 

 Allowed neighbors 

 

 

Discrete dynamical system 
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Tabu Search: Prohibition Mechanisms 

 Strict-TS 

 

 Fixed-TS 

 

 

Reactive-TS 

 
? Are the dynamical systems comparable ? 

? Or qualitative differences ? 

Distinguish policies from mechanisms  
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Issues in prohibition-based search 

 Tuning of T (offline vs. reactive/online) 

 

 Appropriate data structures for storing and 

accessing search history 

 

Robustness for a variety of applications 
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Reactive Prohibition-based search  

Minimal diversification 

sufficient to escape 



Reactive prohibitions 
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Motivations for a dynamic T 

x 

f(x) 

Need large T! 

Need small T! 
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Self-adjusted T 
 T=1 at the beginning 

 Increase T if evidence of entrapment 

Decrease T if evidence disappears 
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How to escape from an attractor 

Cost= Hamming distance from 00000 

 Strict-TS 

Non so intensifying… 
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How to escape from an attractor 

 Strict-TS 

 

 

 

 

 

 

Curse of dimensionality, “basin filling” 
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How to escape from an attractor 

 Fixed-TS 

 

 

 

 

?Sufficient to 

escape or not ? 



NICSO 2007  (c) R. Battiti Reactive Search  39 

How to escape from an attractor 

Reactive-TS (react when loc. minimum is 

repeated) 

T Hamming dist. 
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How to escape from an attractor 

 Reactive-TS 

 

 

 

 reachable Hamming distance is approximately 

O(√t) during the initial steps. 

 Qualitative difference: an (optimistic) logarithmic 

increase in the strict algorithm, and a 

(pessimistic) increase that behaves like the 

square root of the number of iterations in the 

reactive case. 
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Dynamical systems versus 

implementation (policies vs mechanisms) 
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Dynamical systems versus 

implementation 
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Fingerprinting! 
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Persistent 

dynamic  

sets 
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Open hashing with persistent sets 

each iteration of reactive-TS requires O(L) average-case time and 

O(1) amortized space for storing and retrieving the past 

configurations and for establishing prohibitions. 
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Other reaction opportunities 

 Variable Neighborhood Search 

 Iterated Local Search, kicks, … 

Annealing schedule 

Objective function modifications,  

 tunneling, dynamic local search 

Model-based search 

Different randomness levels (SAT) 

Algorithm portfolios and restart 

Racing 

 

 



RSO context 
f(x) is given (either analytically or as a black box) 

 

the emphasis is on learning local models of the 

fitness landscape and using them while 

optimizing (no additional knowledge from DM 

required) 

 

… but in some cases f(x) to optimize is not given, 

modeling user preferences is a crucial issue 
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Try asking a decision maker:  

“give me the f(x) that you are optimizing” 
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Example: MOP: Finding a partner: intelligence versus beauty  

How many IQ points for one less beauty point? 

Is beauty more important than intelligence for you? By how much? 

 

Effective optimization  

as iterative process with learning 
 

Learning what to optimize 



Crucial decisions depend on factors and priorities 
which are not always easy to describe before.  
 
Feedback from the user in the exploration phase!. 

Flexible and interactive decision 
support and problem solving 



Multiobjective optimization 

intermediate (classical) case of missing 

knowledge:  

some criteria are given f1(x) f2(x) … fk(x)  

but not easily combined into a single f(x) 

 

…provide efficient vector solutions (f1,…,fk) 

leave to the user the possibility to decide 

(and to learn about possibilities and “real” 

objectives, even if not formalized)  
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Efficient frontier (PF) 

f1  

f2  

Image of Feasible 

Region in the  

Objective Space 

Pareto Front 

Objective Space 

no other feasible solution is strictly better in one objective  

and at least as good for the other ones 

Preferred solution 51 

a 

b 



Preference information 

 Critical task: identify the preferred solution for 

the DM from the efficient frontier 

 

 Based on the DM preference information usage: 

 A priori MOO methods 

 A posteriori MOO methods 

 Interactive MOO methods (IM)  
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A priori methods 

 Assumptions about preference information 

before optimization process  

 DM specifies preference on the objectives a 

priori 

 Drawbacks: 

 Very difficult task for DM 

  DM often does not know before how realistic his 

expectations are (no learning possiblities) 
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A posteriori methods 

 The Pareto optimal set (or part of it) is 

generated and presented to the DM who selects 

the most preferred among the alternatives. 

 Drawbacks: 

 Generation is computationally expensive: find all 

the non dominated solutions! 

 Hard for the DM to select among a large set of 

alternatives 

 Presenting / displaying the alternatives to the DM 
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Decision paralysis 



Interactive methods 

 Solutions generation phases alternated  to 

solution evaluation phases requiring user 

interaction 

 Effective approach 

 Only a subset of the Pareto optimal set has to be 

generated and evaluated by the DM 

 The DM drives the search process 

 The DM gets to know the problem better (learning 

on the job) 
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Interactive methods 

 Choices: 

 How information is provided to DM 

 How preference information is obtained from DM  

 How the search process is updated based on the 

preference information 

 How the original MOO problem is transformed into 

a single-objective optimization problem  

(scalarization process) 

 e.g.  optimize:   ∑ wi fi(x)  
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Scalarization 

f1  

f2  

Image of Feasible 

Region in the  

Objective Space 

Pareto Front 

Objective space 

∑ wi fi(x) 



Scalarization 

f1  

f2  

Image of Feasible 

Region in the  

Objective Space 

Pareto Front 

Objective space 

∑ wi fi(x) 



Intelligent Interactive MO Method 
(Huang et al. 2005)  

 Iterative procedure 

 NN model of the preference                   

information structure 

 Input: model parameter vector 

 Output: preference value 

 At each iteration reduce the                                 

model parameter vector space                       

based on DM preference                         

information 59 



Current work: B-C EMO: learning for 

multiobjective optimization 
IEEE Transactions on Evolutionary Computation, Vol. 14, Issue 15, 

pag. 671 - 687, 2010. 

Context is the same: learning user preferences 

1. Train a predictor able to reproduce user preferences 

2. Use the learned predictor to guide the search in place of the 

user 

Emphasis is different: 

DM time is a scarce and costly resource It is crucial to minimize the 

number of queries made to the user and their complexity 

Robustness for noise (inconsistencies), model flexibility 

Population-based approach (EMO) 
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Brain-Computer EMO 

Issues: 

 Bounded-rationality and information 

bottlenecks  satisfacing solutions (Simon) 

 Learning on the job – the DM is building a 

conviction of what is possible and confronting this 

knowledge with his preferences, that also evolve 

 Simple questions (comparison, qualitative 

evaluation,... )  

 Uncertainty and inconsistency 
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Formalizing user preferences 

Ideal objective vector  

L∞ metric 

Properly  Pareto-optimal 

Improvement possible only with 

reasonable worsening 

62 

utopian objective vector  



Our solution aims at: 

 1) Learning an arbitrary U from feedback 

interactively provided by the DM 

 2) Using only DM holistic judgements 

 3) Accounting for incomplete, imprecise and 

contradictory feedback 

 4) Using directly the learned U to guide the 

search for refined solutions 

63 



SVN: learning to rank (1) 

Trading-off fitting with 

large-margin separation 

 

Using kernel to decouple learning algorithm 

From example representation 
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SVN: learning to rank (2) 

Lean an utility function for ranking U(z) = <w,Φ(z)> 

For a polynomial  
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f1  

f2  

Z 

population 

EMO: a population to map the PF 
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Combining EMO with ranking SVN  

 General scheme usable for every EMO 

(Evolutionary Multi-objective Optimization, 

usually intended to map entire PF) 

 Experimental tests on non-dominated sorting 

genetic algorithm version II (NSGA-II) EMOA 

 

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist 

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. 

Computat., vol. 6, no. 2, pp. 182–197, Apr. 2002. 
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Evaluating a population 

 Unordered population combining parents and 

offsprings, then 

 1) collecting the subset of non-dominated 

individuals 

 2) sorting them according to the learned 

utility function; 

 3) appending to the sorted set, the result of 

repeating the procedure on the remaining 

dominated individuals. 

68 



Training procedure (1) 

 1) selecting a set of exa best training individuals 

according to the current criterion (random 

nondominated individuals at the first iter.) 

 2) collecting pairwise preferences from the DM 

and adding them to the training set 

 3) performing a kernel selection phase by a k-

fold cross-validation 

 4) training the utility function on the overall set 

of examples with he chosen kernel. 
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Experiments  

 Effectiveness in ealy focusing on the correct search area 

with few queries to the DM 
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Experiments (3) 
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Conclusions 
LION is about Machine Learning for Optimization 

 Learn f(x) from data (experiments, decision maker 

input) 

 Self-tune parametric (flexible) heuristics to make 

them more effective on problems (offline) but also 

on individual instances and local characteristics 

(online – reactive) 

 More automation  wider adoption of optimization 

for businesses, more autonomy of the final user 

Interesting area for young  

and open-minded researchers,  

challenging problems still ahead! 



Learning and Intelligent OptimizatioN 

Conference LION 10,  

Ischia Island, Italy, 29 May - 1 June, 2016 

http://intelligent-optimization.org/lion11/ 73 

LION11 

Submission 

Dec 10 



Thank you 
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Act like the clever archers (arcieri prudenti) who, 

designing to hit the mark which yet appears too far 

distant, and knowing the limits to which the strength of 

their bow attains, take aim much higher than the 

mark, not to reach by their strength or arrow to so great 

a height, but to be able with the aid of so high an aim to 

hit the mark they wish to reach. 

Niccolò Machiavelli , The Prince, c.a.  1500 
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If one does not know to which port one 

is sailing, no wind is favorable.  

Seneca, c.a. 50 


